Tam Sayılar nelerdir - Tam Sayılar hakkında bilgi

'Konu Dışı Başlıklar' forumunda Mavi_Sema tarafından 19 Şubat 2011 tarihinde açılan konu

  1. Mavi_Sema

    Mavi_Sema Özel Üye

    Sponsorlu Bağlantılar
    Tam Sayılar nelerdir - Tam Sayılar hakkında bilgi konusu Tam Sayılar
    Pozitif Tam Sayılar
    Negatif Tam sayılar
    tam Sayılarda Toplama İşlemi
    Tam Sayılarda çarpma İşlemi

    Tam sayılar, doğal sayılar (0,1,2,...) ve bunların negatif değerlerinden oluşur (-1,-2,-3,...). (-0 sayısı 0 sayısına eşit olduğundan ayrı bir tam sayı olarak sayılmaz). Matematikte tam sayıların tümünü kapsayan küme genellikle (ya da Z şeklinde gösterilir). Burada "Z" harfi Almanca Zahlen (sayılar) sözcüğünün baş harfinden gelmektedir.Almancada "zahlen" çok önemli bir şeydir

    Pozitif tam sayılar "0"dan uzaklaştıkça büyür. Negatif tam sayılar ise "0"dan uzaklaştıkça küçülür.

    En büyük negatif tam sayı -1'dir. En küçük pozitif tam sayı ise +1'dir.

    Mutlak değer, sayının başlangıç noktasına uzaklığını ifade eder. Başlangıç noktasına eşit uzaklıktaki sayılar mutlak değerce eşittir. Mutlak değer içindeki her sayı, mutlak değer dışına pozitif olarak çıkar.

    Tarihçte

    Tam sayılar kümesini pozitif tam sayılar, sıfır ve negatif tam sayılar diye üçe ayırmak gerek. Çünkü bunların her biri farklı tarihe sahipler. Pozitif tam sayıların ortaya çıkışı tam olarak bilinmiyor. 70 bin yıl önce pozitif tam sayıların, sayma sayıları olarak kullanıldığını gösteren belgeler var. İlk kullanımın saymak amacıyla olduğu anlaşılıyor. Güney Afrika'da bulunmuş olan bazı taşların üzerinde, yılın altı ayını, 28'er günlük ay takvimine göre sayan, çentikler atıldığı bulunmuştur. Bu çetelelerin sayma amacıyla kullanılmasını matematik olarak nitelemek zor. Sayıları ifade etmek için, her sayıya karşılık bir işaretin, bugünkü tabirimizle rakamların icadı matematiğin başlangıcı sayılabilir. Bu amaçla ilk yazılı kayıtlara M. Ö. 2000 yıllarında Babil'de rastlanıyor. 60 tabanına göre kurulmuş bu sayı sistemi negatif sayıları içinde taşımamakla beraber, kavram olarak sıfırı bulmak mümkün. Demek ki, sayı sistemi yazılı hale getirilinceye kadar, gelişmesi için de bir sürenin geçtiğini var sayarsak, ilk matematik ile ilgili yaklaşık başlangıç zamanı kestirimi bulmuş oluruz. Negatif sayıların ilk kayıtlarda görüldüğü zaman M.Ö. 100–50 dönemi Çin'dir. Hindistan'da Brahmagupta 628'de yayınladığı Brahmasphuta Siddhanta adlı eserinde borç anlamına gelmek üzere negatif sayılardan bahsettiği görülür. Orta Doğu'da muhasebe kayıtlarında borç veya zarar yerine negatif sayıların kullanılması da aynı zamanlara rastlamaktadır.. Avrupa'da negatif sayıları ilk Fibonecci'nin Liber Abaci'sinde görüyoruz. 1202 yılında yayınlanmış bu eser, Arap matematiğini Avrupa'ya taşımakta öncülük etmiştir. . Negatif tam sayıların Avrupa matematiğinde tam olarak yerleşmesi 18. yy.'yi bulur..ayrıca günümüzde hala işe yaramaktadır çok işe yardımcı olur.

    TopLama

    Tam sayılarda toplama yapılırken sayılar pozitifse toplanır sonuca yazılır. İkiside negatifse toplama yapılır fakat sonuç negatif olur. Zıtsa birbirinden çıkarılır. Büyüğün işareti verilir.

    Toplamanın tıpkı doğal sayılarda olduğu gibi kalması, daha doğrusu bu toplamanın doğal sayılardaki toplamanın bir genişlemesi olması gerekir. Bu nedenle tamsayılar aşağıdaki belitleri sağlamalıdır: Herhangi a,b,c tamsayıları için

    a+0=a (birim öğe)
    a+b=b+a (değişme)
    a+(b+c)=(a+b)+c (birleşme)
    a+(-a)=0 (tersinir öğe)
    Buradaki son madde doğal sayılarda olmayan bir özelliktir ve bu özellik tamsayılar kümesini öbek (grup) yapar.

    Çarpma

    Tam sayılarda çarpma işlemi yapılırken aynı işaretlilerin çarpımı pozitif farklı işaretlilerin çarpımı ise negatifdir. Bölme işlemindede aynı çarpma kuralı uygulanır ve sayı aynı doğal sayılarda olduğu gibi bölünür. aynı işaretli iki tam sayı birbirine bölündüğünde sonuç pozitif, zıt işaretli iki tam sayı birbirine bölündüğünde ise sonuç negatiftir. tam sayıların sıfıra bölümü tanımsızdır. sıfırın tam sayılara bölümünde elde edilen sonuç ise sıfırdır.

    Tamsayılarda çarpma işlemi doğal sayılardaki çarpmayla aynı özellikleri gösterir. Çarpma işlemi, "" imiyle gösterilir, ancak yazmak yerine doğrudan ab yazmak gelenektendir. Bu maddede de öyle yapacağız.

    Herhangi a, b, c tamsayıları için,

    a1=a (birim öğe)
    ab=ba (değişme)
    a(bc)=(ab)c (birleşme)
    özellikleri sağlanır. Tamsayılarda çarpmaya göre tersinir öğe yoktur.

    Ayrıca toplama ile çarpmanın birbirleriyle olan ilişkisini gösteren dağılma özelliği de vardır:

    a(b+c)=ab+ac (çarpmanın toplama üzerine dağılma ya da kısaca soldan dağılma özelliği)
    (a+b)c=ac+bc (toplamanın çarpma üzerine dağılma ya da kısaca sağdan dağılma özelliği)
    Toplamayla birlikte bu iki işlem tamsayıları değişmeli halka yapar.
     
  2. çıkarmayla bölmne yokkk :DW
     

Bu Sayfayı Paylaş