Dik açılı üçgenin özellikleri nelerdir?

'Frmartuklu Soru-Cevap Bölümü' forumunda Kayıtsız Üye tarafından 28 Mart 2011 tarihinde açılan konu

  1. Sponsorlu Bağlantılar
    Dik açılı üçgenin özellikleri nelerdir? konusu Dik açılı üçgenin özellikleri nelerdir?

    Dik üçgen, iç açılarından biri 90° olan üçgendir. Çemberde çapı gören çevre açı 90°'dir.

    Bir dik üçgende kenarlar arasında a2 = b2 + c2 bağıntısı vardır.

    Pisagor Teoremi

    Pisagor teoremi, herhangi bir dik üçgende kenarlar arasındaki bağıntıya verilen addır. Bu bağıntıya göre, dik kenarların karelerinin toplamı, hipotenüsün karesine eşittir.
    [​IMG]

    Öklid Bağıntıları

    Ana madde: Öklid Bağıntıları Öklid Bağıntıları, bir dik üçgende hipotenüse indirilen dikme sonucunda oluşan dik üçgenler arasındaki çeşitli benzerliklerden çıkan bağıntılara verilen isimdir. Örneğin indirilen dikmenin karesi, hipotenüsün dikme tarafından ayrılan parçalarının çarpımına eşittir.


    Özel Dik Üçgenler


    Açıya Göre



    [​IMG]
    İkizkenar dik üçgen



    45-45-90 Üçgeni

    [​IMG]

    45-45-90 üçgeni bir ikizkenar dik üçgendir. Üçgenin dik kenarları birbirine eşit ve hipotenüsü dik kenarların [​IMG] katıdır. Oran aşağıdaki gibidir:
    [​IMG]
    İspatı ise çok basittir. Bir dik kenara 1 cm denilirse, ikizkenarlıktan dolayı diğer dik kenar da 1 cm olmak zorundadır. Pisagor Teoremi'nden de hipotenüs [​IMG] çıkar.

    30-60-90 Üçgeni

    [​IMG][​IMG]
    30-60-90 üçgeni ve ispatı


    Açıları 30-60-90 olan bir dik üçgende hipotenüs, 30°'nin karşısındaki kenar ve 60°'nin karşısındaki kenar arasında sırasıyla aşağıdaki oran vardır:
    [​IMG]
    Yani 30°'nin karşısındaki kenar hipotenüsün yarısı ve 60°'nin karşısındaki kenar da 30°'nin karşısındaki kenarın [​IMG] katıdır. İspatı ise eşkenar üçgen vasıtasıyla yapılır. Kenarları 2 cm olan bir eşkenar üçgende köşeden indirilen dikme kenarı iki eş parçaya bölecektir. Aynı zamanda da açıortay olacaktır. Kenarortay olduğu için oluşan dik üçgenin alt dik kenarı 1 cm olacaktır. Açıortay olduğu için de dik üçgenin bir açısı 30° olacaktır. Eşkenar üçgenin bir kenarı, oluşan dik üçgenin hipotenüsü olacağından yapılacak Pisagor bağıntısı ile de indirilen dikme [​IMG] cm bulunacaktır.

    22,5-67,5-90 Üçgeni

    Bu üçgende ise 22,5°'lik açının karşısındaki dik kenar 1 cm ise, 67,5 cm'lik kenarın karşısındaki kenar [​IMG] cm olur. İspatı ise 67,5°'lik açıyı 45° ve 22,5° şeklinde parçalayarak yapılır. Bu şekilde altta oluşan ikizkenar dik üçgende alt dik kenar 1 cm olursa hipotenüs [​IMG] cm olur. Yukarıda oluşacak ikizkenar üçgende de parçalanan kenarın diğer üst tarafı hipotenüse eşit olur. Alt parçası da ikizkenar dik üçgenden dolayı 1 cm bulunacağından [​IMG] elde edilir.

    15-75-90 Üçgeni

    Bu üçgende 15°'lik açının karşısındaki kenar 1 cm ise 75°'lik kenarın karşısındaki kenar [​IMG] cm olur. İspatı ise 22,5-67,5-90 üçgenindeki gibidir. Tek farkı, 75°'lik açının 15° ve 60°'lik açılarara bölünmesidir.
    Ayrıca bu üçgende hipotenüse indirilen dikme, hipotenüsün [​IMG] katıdır.


    Kenara Göre

    Kenarlara göre özel dik üçgenler genelde okullarda soru yazılırken işlem kolaylığı sağlamak amacıyla kullanılır. Bazı özel üçgenler şunlardır:
    [​IMG] [​IMG] [​IMG] [​IMG] [​IMG] Bu üçgenlerin kenar uzunlukları aynı oranda artırılarak yine uygun dik üçgenler elde edilebilir (örneğin, 3-4-5 ve 6-8-10).
     
    En son bir moderatör tarafından düzenlenmiş: 29 Şubat 2016
  2. SeLeN

    SeLeN Site Yetkilisi Editör

    Dik üçgen, iç açılarından biri 90° olan üçgendir. Çemberde çapı gören çevre açı 90°'dir.

    Bir dik üçgende kenarlar arasında a2 = b2 + c2 bağıntısı vardır.

    Pisagor Teoremi

    Pisagor teoremi, herhangi bir dik üçgende kenarlar arasındaki bağıntıya verilen addır. Bu bağıntıya göre, dik kenarların karelerinin toplamı, hipotenüsün karesine eşittir.
    [​IMG]

    Öklid Bağıntıları

    Ana madde: Öklid Bağıntıları Öklid Bağıntıları, bir dik üçgende hipotenüse indirilen dikme sonucunda oluşan dik üçgenler arasındaki çeşitli benzerliklerden çıkan bağıntılara verilen isimdir. Örneğin indirilen dikmenin karesi, hipotenüsün dikme tarafından ayrılan parçalarının çarpımına eşittir.


    Özel Dik Üçgenler


    Açıya Göre



    [​IMG]
    İkizkenar dik üçgen



    45-45-90 Üçgeni

    [​IMG]

    45-45-90 üçgeni bir ikizkenar dik üçgendir. Üçgenin dik kenarları birbirine eşit ve hipotenüsü dik kenarların [​IMG] katıdır. Oran aşağıdaki gibidir:
    [​IMG]
    İspatı ise çok basittir. Bir dik kenara 1 cm denilirse, ikizkenarlıktan dolayı diğer dik kenar da 1 cm olmak zorundadır. Pisagor Teoremi'nden de hipotenüs [​IMG] çıkar.

    30-60-90 Üçgeni

    [​IMG][​IMG]
    30-60-90 üçgeni ve ispatı


    Açıları 30-60-90 olan bir dik üçgende hipotenüs, 30°'nin karşısındaki kenar ve 60°'nin karşısındaki kenar arasında sırasıyla aşağıdaki oran vardır:
    [​IMG]
    Yani 30°'nin karşısındaki kenar hipotenüsün yarısı ve 60°'nin karşısındaki kenar da 30°'nin karşısındaki kenarın [​IMG] katıdır. İspatı ise eşkenar üçgen vasıtasıyla yapılır. Kenarları 2 cm olan bir eşkenar üçgende köşeden indirilen dikme kenarı iki eş parçaya bölecektir. Aynı zamanda da açıortay olacaktır. Kenarortay olduğu için oluşan dik üçgenin alt dik kenarı 1 cm olacaktır. Açıortay olduğu için de dik üçgenin bir açısı 30° olacaktır. Eşkenar üçgenin bir kenarı, oluşan dik üçgenin hipotenüsü olacağından yapılacak Pisagor bağıntısı ile de indirilen dikme [​IMG] cm bulunacaktır.

    22,5-67,5-90 Üçgeni

    Bu üçgende ise 22,5°'lik açının karşısındaki dik kenar 1 cm ise, 67,5 cm'lik kenarın karşısındaki kenar [​IMG] cm olur. İspatı ise 67,5°'lik açıyı 45° ve 22,5° şeklinde parçalayarak yapılır. Bu şekilde altta oluşan ikizkenar dik üçgende alt dik kenar 1 cm olursa hipotenüs [​IMG] cm olur. Yukarıda oluşacak ikizkenar üçgende de parçalanan kenarın diğer üst tarafı hipotenüse eşit olur. Alt parçası da ikizkenar dik üçgenden dolayı 1 cm bulunacağından [​IMG] elde edilir.

    15-75-90 Üçgeni

    Bu üçgende 15°'lik açının karşısındaki kenar 1 cm ise 75°'lik kenarın karşısındaki kenar [​IMG] cm olur. İspatı ise 22,5-67,5-90 üçgenindeki gibidir. Tek farkı, 75°'lik açının 15° ve 60°'lik açılarara bölünmesidir.
    Ayrıca bu üçgende hipotenüse indirilen dikme, hipotenüsün [​IMG] katıdır.


    Kenara Göre

    Kenarlara göre özel dik üçgenler genelde okullarda soru yazılırken işlem kolaylığı sağlamak amacıyla kullanılır. Bazı özel üçgenler şunlardır:
    [​IMG] [​IMG] [​IMG] [​IMG] [​IMG] Bu üçgenlerin kenar uzunlukları aynı oranda artırılarak yine uygun dik üçgenler elde edilebilir (örneğin, 3-4-5 ve 6-8-10).
     

Bu Sayfayı Paylaş