Dik Üçgende Metrik Bağıntılar - Dik Üçgenlerle İlgili Bağıntılar

'Konu Dışı Başlıklar' forumunda Mavi_inci tarafından 30 Aralık 2010 tarihinde açılan konu

  1. Mavi_inci

    Mavi_inci Özel Üye

    Sponsorlu Bağlantılar
    Dik Üçgende Metrik Bağıntılar - Dik Üçgenlerle İlgili Bağıntılar konusu Dik Üçgende Metrik Bağıntılar - Dik Üçgenlerle İlgili Bağıntılar

    Pisagor Teoremi

    Pisagor teoremi, herhangi bir dik üçgende kenarlar arasındaki bağıntıya verilen addır. Bu bağıntıya göre, dik kenarların karelerinin toplamı, hipotenüsün karesine eşittir.

    [​IMG] pisagor bağıntısıda 90 derecenin karşısındaki kenara hipatenüs adı verilir.hipotenüsün karesi diğer dik kenarların karesine eşittir.tüm bu kenarlar toplanır ve karekökü alınır yani sonuç budur.

    Özel Dik Üçgenler

    Açıya Göre

    [​IMG] [​IMG]
    İkizkenar dik üçgen


    45-45-90 Üçgeni

    45-45-90 üçgeni bir ikizkenar dik üçgendir. Üçgenin dik kenarları birbirine eşit ve hipotenüsü dik kenarların [​IMG] katıdır. Oran aşağıdaki gibidir:
    [​IMG]


    İspatı ise çok basittir. Bir dik kenara 1 cm denilirse, ikizkenarlıktan dolayı diğer dik kenar da 1 cm olmak zorundadır. Pisagor Teoremi'nden de hipotenüs [​IMG] çıkar.
    ...30-60-90 Üçgeni.....

    [​IMG] [​IMG]
    30-60-90 üçgeni ve ispatı


    Açıları 30-60-90 olan bir dik üçgende hipotenüs, 30°'nin karşısındaki kenar ve 60°'nin karşısındaki kenar arasında sırasıyla aşağıdaki oran vardır:


    [​IMG]


    Yani 30°'nin karşısındaki kenar hipotenüsün yarısı ve 60°'nin karşısındaki kenar da 30°'nin karşısındaki kenarın [​IMG] katıdır. İspatı ise eşkenar üçgen vasıtasıyla yapılır. Kenarları 2 cm olan bir eşkenar üçgende köşeden indirilen dikme kenarı iki eş parçaya bölecektir. Aynı zamanda da açıortay olacaktır. Kenarortay olduğu için oluşan dik üçgenin alt dik kenarı 1 cm olacaktır. Açıortay olduğu için de dik üçgenin bir açısı 30° olacaktır. Eşkenar üçgenin bir kenarı, oluşan dik üçgenin hipotenüsü olacağından yapılacak Pisagor bağıntısı ile de indirilen dikme [​IMG] cm bulunacaktır.



    22,5-67,5-90 Üçgeni

    Bu üçgende ise 22,5°'lik açının karşısındaki dik kenar 1 cm ise, 67,5 cm'lik kenarın karşısındaki kenar [​IMG] cm olur. İspatı ise 67,5°'lik açıyı 45° ve 22,5° şeklinde parçalayarak yapılır. Bu şekilde altta oluşan ikizkenar dik üçgende alt dik kenar 1 cm olursa hipotenüs [​IMG] cm olur. Yukarıda oluşacak ikizkenar üçgende de parçalanan kenarın diğer üst tarafı hipotenüse eşit olur. Alt parçası da ikizkenar dik üçgenden dolayı 1 cm bulunacağından [​IMG] elde edilir.



    15-75-90 Üçgeni

    Bu üçgende 15°'lik açının karşısındaki kenar 1 cm ise 75°'lik kenarın karşısındaki kenar [​IMG] cm olur. İspatı ise 22,5-67,5-90 üçgenindeki gibidir. Tek farkı, 75°'lik açının 15° ve 60°'lik açılara bölünmesidir.
    Ayrıca bu üçgende hipotenüse indirilen dikme, hipotenüsün [​IMG] katıdır.

    Kenarlara göre özel dik üçgenler genelde okullarda soru yazılırken işlem kolaylığı sağlamak amacıyla kullanılır. Bazı özel üçgenler şunlardır:



    [​IMG] [​IMG] [​IMG] [​IMG] [​IMG] Bu üçgenlerin kenar uzunlukları aynı oranda artırılarak yine uygun dik üçgenler elde edilebilir (örneğin, 3-4-5 ve 6-8-10).


    Ayrıca herhangi bir tek sayıyı kenar uzunluğu olarak belirlersek karesinin ardışık toplamları da diğer iki kenarı verecektir. Örnek olarak; 7=>7'nin karesi 49=25+24 7,25,24 şeklinde özel bir dik üçgen vardır. 9=>9'un karesi 81=40+41 9,40,41 şeklinde özel bir dik üçgen vardır. Ve dik üçgende kenarların tamsayı olduğu koşulda, en kısa kenarı tek sayı ise kalan kenarların bu kurala uyması şarttır.

    Alıntı
     

Bu Sayfayı Paylaş