Archimedes (Arşimet) (Arşimet Kimdir? - Arşimet Hakkında)

'Biyografi & Otobiyografi' forumunda UquR tarafından 5 Eylül 2008 tarihinde açılan konu

  1. UquR

    UquR Üye

    Sponsorlu Bağlantılar
    Archimedes (Arşimet) (Arşimet Kimdir? - Arşimet Hakkında) konusu Archimedes (Arşimet) (Arşimet Kimdir? - Arşimet Hakkında)


    (M.Ö. 287 - 212) Seçkin bilim adamları çoğunluk kimi çarpıcı imajlarla hafızalarda yer etmiştir: Engizisyon önünde sorgulanan Galileo; dalından kopan elmanın yere düşmesiyle, ayın dünya çevresindeki devinimini birleştiren Newton; gemi üzerinde beş yıl süren doğa incelemesi gezisine çıkan Darwin; Bern patent ofisinde sıradan bir görevliyken, [​IMG] denklemini oluşturan Einstein; banyodan kendini sokağa atıp "Buldum, buldum!" diyerek sokakta çıplak koşan Archimedes.

    Archimedes neyi bulmuştu? Neyin coşkusu içindeydi?

    Bu soruyu yanıtlamaya geçmeden kısaca Archimedes'i, yaşadığı dönemi tanıyalım.

    Grek kökenli bir aileden gelen Archimedes, Sicilya'nın Siraküz kentinde doğdu. Babası tanınmış bir astronomdu. Öğrenimini, dönemin bilim merkezi olan İskenderiye'de tamamladı; Euclid geometrisi onu nerdeyse büyülemişti. Siraküz'e döndükten sonra tüm yaşamını matematik ve bilimsel çalışmalara verdi.

    Archimedes'in dikkat çeken bir özelliği çok yanlı bir araştırmacı olmasıydı: ilgi alanı kuramsal matematikten uygulamalı fizik ve savaş mühendisliğine uzanan çeşitli alanları kapsıyordu. Bilimsel kişiliğinde göz alıcı teknisyen becerisiyle üstün matematik yeteneğinin birleştiğini görmekteyiz. Ama ilgi odağında öncelikle koni kesitleri, hidrostatik ve dengeye ilişkin kuramsal sorunlar yer alıyordu. Problem çözme büyük tutkusuydu. Söylentiye göre, kumsalda bir geometri problemi üzerinde uğraşırken kendisine yaklaşan Romalı askerlerin farkına varmaz, saldırıya uğrayarak yaşamını yitirir.

    Sorumuza dönelim: Archimedes neyin heyecanıyla kendim sokağa atmıştı? Ayrıntıya girmeden yanıtı bir cümlede verelim: fizikte şimdi "Archimedes ilkesi" diye bilinen bir doğa yasasını bulmanın heyecanıyla!

    Hikâyeyi hemen herkes bilir: Siraküz'ün despot kralı Hiero, ölümsüz Tanrılar tapınağına konmak üzere kentin tanınmış kuyumcusuna som altından bir taç yapması emrini verir. Kuyumcu, kralın sağladığı altın ağırlığındaki tacı zamanında tamamlar, teslim eder. Ne var ki, kimi söylentiler kralı, tacın yapısına gümüş karıştırıldığı kuşkusuna düşürür. Kral gerçeği öğrenmek ister.

    Daha o zaman her maddenin kendine özgü bir ağırlığı olduğu, örneğin, bir altın parçasının aynı büyüklükteki gümüş parçasından daha ağır çektiği biliniyordu. Ne ki, kralın elinde aynı biçim ve büyüklükte saf altından başka bir taç yoktu ki, ağırlık mukayesesi yapabilsin. Bilinen tek seçenek tacı eritip küp biçiminde dökmek, aynı büyüklükteki küp altınla terazide tartmaktı. Ama bu çözüm, uzun emek ve ince bir ustalıkla işlenmiş olan tacı yok etmek demekti. Sorun, tacı bozmaksızın kullanılan altın miktarını belirleyebilmekti. Buyurgan kral çaresizdi; ama aptal değildi. Sonunda bilime başvurma gereğini anlar, sorunun çözümünü Archimedes'den ister.

    Hikâyede, Archimedes'in çözüm arayışında düşünsel düzeyde nasıl bir uğraş verdiğinden söz edilmiyor; sadece, banyo küvetine ayak attığında çözümün bir anda aklına nasıl geldiği vurgulanıyor. Archimedes küvete ayak atınca su düzeyinin yükseldiğini fark eder, oturunca suyun taştığını görür ve hemen suya daldırılan bir nesnenin oylumunun, yapısal biçimi ne olursa olsun, taşırdığı suyun oylumu ile belirlenebileceğini anlar. Öyleyse yapacağı şey basitti: suyla dolu bir kaba tacı daldırmak, oylumu taşan suyun oylumuna denk altın parçasıyla tacı tartmak! Deney tacın saf altın olmadığını ortaya çıkarır; kurnaz usta suçunu yaşamıyla öder sonunda.

    Hikâye bu. Gelelim olayın bizi ilgilendiren yönüne.

    İlk bakışta, pratik düzeyde sıradan görünen bu buluş, aslında, bilimsel yöntemin işleyişini gösteren ilginç bir örnektir. Araştırmacı çözüm isteyen bir sorunla karşı karşıyadır. Sorun, ne salt mantıksal düşünmeyle çözümü verilebilecek matematiksel türden, ne de klasik Grek filozoflarının yönelik olduğu metafiziksel türden bir sorundu. Sorun, çözümü gözlem ve gözleme dayanan düşünce (hipotez) gerektiren bir sorundu. Tacın som altından olup olmadığı sorusuyla küvetteki su düzeyinin değişmesi gözleminin ilişkisi ne olabilirdi?

    Küvete girildiğinde su düzeyinin değiştiğini fark etmek bir gözlemdir. Olasıdır ki, Archimedes'den önce de pek çok kimsenin gözünden kaçmamıştır bu olay. Ama Archimedes'e gelinceye dek hiç kimsenin gözlem konusu bu olayla herhangi bir nesnenin maddesel niteliği arasında ilişki kurduğunu bilmiyoruz. Bir araştırmacıya üstün bilim adamı kimliği kazandıran şey (buna ister sezgi, ister yaratıcı zekâ, ister deha diyelim) işte sıradan kimselere kapalı kalan bu türden bir ilişkiyi kurabilmektir.

    Archimedes'in aynı soruna ilişkin bir başka gözlemi daha vardır: küvete oturduğunda, su düzeyindeki yükselmenin yanı sıra gövde ağırlığında hissettiği hafifleme. Bu ikinci gözlem onu, sonucu bakımından çok daha önemli yeni bir ilişki kurmaya götürür: hafiflemenin taşan suyun ağırlığına eşit olması. Bu demektir ki, sudan daha yoğun bir nesne, suya daldırıldığında, taşırdığı suyun ağırlığınca ağırlığından yitirir. "Archimedes ilkesi" denen bu ilişki hidrostatik diye bilinen fizik dalının temel taşıdır. Ne ki, iş bu kadarla kalmaz: Archimedes hidrostatiğin temelini attığı gibi fiziğin ana dalı mekaniğin de temelini atar.

    Kaldıraç, pratik yararı çok eskiden bilmen, çeşitli uygulama alanları olan bir ilkeye dayanır. Helenist dönemden 2000 yıl öncesine uzanan Asur ve Mısır uygarlıklarına ait pek çok yapı ve yontularda ilkenin örneklendiği görülmektedir. Archimedes'in yaptığı ilkeyi teorik yönden temellendirmek olmuştur. Geçmişten gelen uygulama ve gözlem birikimi ilkeyi doğrulayıcı nitelikteydi kuşkusuz; ama bu Archimedes için yeterli değildi. Archimedes, "Eşit olmayan iki ağırlık, destek noktasından bu ağırlıklarla ters orantılı mesafelerde dengelenir," diye dile getirdiği ilkeyi bir yasa (ya da teorem) olarak ispatlama yoluna gider.

    Bilindiği gibi o çağda bir bilimin yetkinlik ölçütü önermelerinin aksiyom ve teorem olarak dedüktif bir dizgede düzenlenebilmesiydi. Bunun bilinen en çarpıcı örneğini Euclid geometrisi ortaya koymuştu. Euclid'i örnek alan Archimedes benzer başarıyı önce hidrostatikte, sonra mekanikte gösterir. Matematikte bir teoremin ispatında olduğu gibi, kaldıraç ilkesinin ispatında da doğruluğu ya apaçık sayılan ya da gözlemsel olarak kanıtlanmış bir kaç temel önermeye (aksiyoma) ihtiyaç vardı. Nitekim Archimedes ispatında şu iki önermeyi öncül olarak almıştır:

    (1) Destek noktasından eşit uzaklıkta bulunan eşit ağırlıklar dengede kalır.

    (2) Destek noktasından eşit olmayan uzaklıklardaki eşit ağırlıklar dengeyi bozar; daha uzakta olan ağır basar.

    Archimedes, bu iki önermenin kaldıraç ilkesini (ya da bu ilkeye eşdeğer olan çekim merkez ilkesini) içerdiğini sezmiş, sezgisini mantıksal yoldan kanıtlamak istemişti. Böylece geometri dışı bir çalışma alanında, hem ideal gördüğü geometrik modeli gerçekleştirmiş, hem de öncül olarak aldığı iki önermeye dayanarak kaldıraç ilkesini ispatlamış oluyordu.

    Archimedes kuşkusuz antik dünyanın ilk ve en büyük bilim adamıydı. Bugün dünyamıza gözlerini açsa, ne bilimimiz, ne de bilime dayalı teknolojimiz onu fazla şaşırtmayacaktır, herhalde! Onun çoğu kez gözden kaçan ama belki de en büyük başarısı araştırma etkinliğinde gözlem ile ussal çıkarımı birleştirmesi, modern anlamda bilimsel yöntemin ilk özgün örneğini ortaya koymuş olmasıdır.

    Archimedes'in yaşadığı dönemin ne denli ilerisinde olduğunu gösteren bir kanıtı da Rönesans'ın eşsiz dehası Leonardo da Vinci'nin ona gösterdiği özel ilgide bulmaktayız. Leonardo, Archimedes'in bıraktığı yazılı metinleri elde etmek için inanılmaz bir çaba içine girmiş, kimi çalışmalarında onu örnek almıştı. Mekanik alandaki tüm buluş ve icatlarına karşın, Archimedes'in asıl ilgi odağı geometri idi. Öyle ki, bir silindirin oylumunun, içine yerleştirilen bir kürenin oylumuna olan oranı üzerindeki buluşunu en büyük başarısı sayıyordu.

    Övündüğü bir başka buluşu da, giderek artan sayıda kenarlı düzgün poligon kullanarak dairenin çevresiyle çapının oranının (3 tam 10/71)'den büyük (3 tam 1/7)'den küçük olduğunu saptamasıydı. Romalıları, Siraküz'ü işgalden üç yıl alıkoyan savaş araçlarının yanı sıra, icat ettiği diğer mekanik aygıt ve oyuncaklar kendi gözünde yalnızca boş zamanlarını dolduran eğlendirici işlerdi.

    Problem çözme coşkusunu, banyodan sokağa fırlayarak "Buldum, buldum!" seslenmesiyle açığa vuran Archimedes, bilimde atılım gücünü, "Bana bir dayanak gösterin, tüm dünyayı yerinden oynatayım!" çağrısında dile getirmişti.

    Archimedes

    [​IMG]
    Arşimet (M.Ö. 287, Sicilya - M.Ö. 212, Sicilya), Yunan matematikçi, fizikçi, astronom, filozof ve mühendis. Bir hamamda yıkanırken bulduğu iddia edilen suyun kaldırma kuvveti bilime en çok bilinen katkısıdır.Ancak pek çok matematik tarihçisine göre integral hesabın kaynağı da Archimedes'tir.
    Roma generali Marcellus, Sirakuza'yı kuşattığında, Archimedes mühendisin yapmış olduğu silahlar nedeniyle şehri almakta çok zorlanmıştı. Bunların çoğu mekanik düzeneklerdi ve bazı bilimsel kurallardan ilham alınarak tasarlanmıştı. Örneğin, makaralar yardımıyla çok ağır taşlar burçlara kadar çıkarılıyor ve mancınıklarla çok uzaklara fırlatılıyordu. Hatta Archimedes'in aynalar kullanmak suretiyle Roma donanmasını yaktığı da rivayet edilmektedir. Ancak bütün bunlara karşın M.Ö. 212 yılında Romalılar Sirakuza'yı zapt ettiler ve şehrin diğer ileri gelenleriyle birlikte Arşimet'i de öldürdüler.
    Söylentilere göre; "bu sırada Archimedes kum üzerine çizdiği çemberlerle hesaplar yapmaktadır. Elinde boynuna vurulmak üzere kaldırılan bir kılıçla yaklaşan romalı askere aldırmaz bile. Başını hesaplarından kaldırmadan "çemberlerime dokunma" der. Arşimedin kesik başı çemberlerin arasına düşer."
    Archimedes hem bir fizikçi, hem bir matematikçi, hem de bir filozoftur. Gençliğinde bir süre İskenderiye'de bulunmuş, burada Eratosthenes ile arkadaş olmuş ve daha sonra da onunla mektuplaşmıştır. Archimedes'in mekanik alanında yapmış olduğu buluşlar arasında bileşik makaralar, sonsuz vidalar, hidrolik vidalar ve yakan aynalar sayılabilir. Bunlara ilişkin eserler vermemiş, ancak matematiğin geometri alanına, fiziğin statik ve hidrostatik alanlarına önemli katkılarda bulunan pek çok eser bırakmıştır.
    Geometriye yapmış olduğu en önemli katkılardan birisi, bir kürenin yüzölçümünün 4πr2 ve hacminin ise 4/3 πr3 eşit olduğunu kanıtlamasıdır. Bir dairenin alanının, tabanı bu dairenin çevresine ve yüksekliği ise yarıçapına eşit bir üçgenin alanına eşit olduğunu kanıtlayarak pi'nin değerinin 3 +l/7 ve 3 +10/71 arasında bulunduğunu göstermiştir.
    Archimedes'in en parlak matematik başarılarından biri de, eğri yüzeylerin alanlarını bulmak için bazı yöntemler geliştirmesidir. Bir parabol kesmesini dörtgenleştirirken sonsuz küçükler hesabına yaklaşmıştır. Sonsuz küçükler hesabı, bir alana tasavvur edilebilecek en küçük parçadan daha da küçük bir parçayı matematiksel olarak ekleyebilmektir. Bu hesabın çok büyük bir tarihi değeri vardır. Sonradan modern matematiğin gelişmesinin temelini oluşturmuş, Newton ve Leibniz'in bulduğu diferansiyel ve entegral hesap için iyi bir temel oluşturmuştur.
    Archimedes Parabolün Dörtgenleştirilmesi adlı kitabında, tüketme metodu ile bir parabol kesmesinin alanının, aynı tabana ve yüksekliğe sahip bir üçgenin alanının 4/3'üne eşit olduğunu ispatlamıştır.
    İlk defa denge prensiplerini ortaya koyan bilim adamı da Archimedes'dir. Bu prensiplerden bazıları şunlardır:
    1. Eşit kollara asılmış eşit ağırlıklar dengede kalır.
    2. Eşit olmayan ağırlıklar eşit olmayan kollarda aşağıdaki koşul sağlandığında dengede kalırlar: f1 · a = f2 · b
    Bu çalışmalarına dayanarak söylediği "Bana bir dayanak noktası verin Dünya'yı yerinden oynatayım." sözü yüzyıllardan beri dillerden düşmemiştir.
    Archimedes, kendi adıyla tanınan sıvıların dengesi kanununu da bulmuştur. Söylendiğine göre, bir gün Kral II Hieron yaptırmış olduğu altın tacın içine kuyumcunun gümüş karıştırdığından kuşkulanmış ve bu sorunun çözümünü Archimedes'e havale etmiş. Bir hayli düşünmüş olmasına rağmen sorunu bir türlü çözemeyen Archimedes, yıkanmak için bir hamama gittiğinde, hamam havuzunun içindeyken ağırlığının azaldığını hissetmiş ve "Buldum, buldum" diyerek hamamdan fırlamış.Archimedes'in bulduğu şey; su içine daldırılan bir cismin taşırdığı suyun ağırlığı kadar ağırlığını kaybetmesi ve taç için verilen altının taşırdığı su ile tacın taşırdığı su mukayese edilerek sorunun çözülebilmesi idi.
    Archimedes'in araştırmalarından önce, tahtanın yüzdüğü ama demirin battığı biliniyordu; ancak bunun nedeni açıklanamıyordu. Archimedes'in bu kanunu doğada tesadüflere yer olmadığını, her zaman aynı koşullarda aynı sonuçlara ulaşılacağını göstermiştir. Archimedes, 23 yüzyıl önce, modern bilimsel yöntem anlayışına çok yakın bir anlayışla, bugün de geçerli olan statik ve hidrostatik kanunlarını bulmuş ve bu katkılarıyla bilim tarihinin en büyük üç kahramanından biri olmaya hak kazanmıştır.

    Sirakuza Savunması

    M.Ö. 216 yılında Archimedes 70 yaşını aşmış, akrabalarından biri olduğu söylenen Sirakuza kıralı Hieron ölmüştü. İkinci Bhon Savaşı sonunda da şehir yenilgiye uğramış, Kartaca'lılarla birleşmeyi kabul etmişti. Bunun üzerine Romalılar, ünlü konsüllerinden biri olan Claudius Marcellus'u bir orduyla Sirakuza'ya gönderdiler.
    Yaşlı Archimedes, hiçbir zaman katılmadığı siyaset alanından uzakta kendini çalışmalarına vermiş, sessiz ve sakin bir hayat sürüyordu. Ama onun hikmet ve zekâsına hayranlık duyan hemşehrileri şehri savunması için kendisinden yardım dilediler. Archimedes, bu çağrıyı adeta istemeyerek kabul etti.
    Romalılar, onun bir mucit ve mühendis olarak yaratıcı kabiliyetini öğrenmekte gecikmediler. Bir gün, kıyıdaki şehir surlarına kadar sokulan bir Roma savaş gemisi birdenbire dev gibi korkunç bir kerpetenle karşılaştı. Duvarların arkasından çıkan bu alet gemiyi pruvasından yakaladığı gibi çeneleri arasında kıstırarak parçaladı. Kaldıraç kolları ve dönel kasnaklar yardımıyla işleyen bu aletin çalışma prensipleri Archimedes tarafından ortaya konulmuştu. Böylece bir kaldıraç mekanizması ilk defa olarak gerçekleştiriliyordu.
    Bu arada surların arkasına yerleştirilen dev mancınıklar, düşmanın üzerine ağır oklar ve taş yağdırıyordu. Güvertesi ve bordası delik deşik olan gemilerin direkleri parçalanıyor, gemidekilerin üzerine düşüyor, düşman ağır kayıplar veriyordu.
    Archimedes'in Güneş ışınlarını büyük bir ayna aracılığıyla düşman üzerine yansıtıp gemileri ateşe verdiği de söylenir. Ama inanılması oldukça güç olan bu hikaye, belki de bir efsaneden başka bir şey değildir.
    Bununla birlikte Archimedes'in icat ettiği makineler, Romalıların gözlerini o derece yıldırmıştı ki surların üzerinde bir ip ya da değnek gördükleri zaman gene onun bir makinesi sanarak bağırıp kaçışıyorlardı. Claudius Marcellus, ister istemez hayranlık duyduğu bu düşmanıyla kendi mühendislerinin başa çıkamayacağını anladı. "Bu matematik devi ile neden savaşalım ? Bizimle alay eder gibi kıyıda oturup donanmamızı yok ediyor !" diyerek Sirakuza'yı tam bir ablukaya aldı.Çok ünlü bir insan olmuştur.
     

Bu Sayfayı Paylaş